基础知识 || 快速入门 || 张量 || 数据集和数据加载器 || 变换 || 构建模型 || 自动求导 || 优化 || 保存与加载模型
保存与加载模型
在本节中,我们将探讨如何通过保存、加载和运行模型预测来持久化模型状态。
importtorch
importtorchvision.modelsasmodels
保存与加载模型权重
PyTorch 模型将学习到的参数存储在一个称为 state_dict
的内部状态字典中。这些参数可以通过 torch.save
方法持久化保存:
model = models.vgg16(weights='IMAGENET1K_V1')
torch.save(model.state_dict(), 'model_weights.pth')
Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/vgg16-397923af.pth
0%| | 0.00/528M [00:00<?, ?B/s]
3%|2 | 15.1M/528M [00:00<00:03, 158MB/s]
6%|6 | 32.2M/528M [00:00<00:03, 170MB/s]
9%|9 | 49.5M/528M [00:00<00:02, 175MB/s]
13%|#2 | 67.0M/528M [00:00<00:02, 178MB/s]
16%|#6 | 84.8M/528M [00:00<00:02, 181MB/s]
19%|#9 | 102M/528M [00:00<00:02, 183MB/s]
23%|##2 | 120M/528M [00:00<00:02, 184MB/s]
26%|##6 | 138M/528M [00:00<00:02, 184MB/s]
30%|##9 | 156M/528M [00:00<00:02, 185MB/s]
33%|###2 | 174M/528M [00:01<00:02, 184MB/s]
36%|###6 | 191M/528M [00:01<00:01, 181MB/s]
40%|###9 | 209M/528M [00:01<00:01, 179MB/s]
43%|####2 | 226M/528M [00:01<00:01, 178MB/s]
46%|####5 | 243M/528M [00:01<00:01, 176MB/s]
49%|####9 | 260M/528M [00:01<00:01, 175MB/s]
52%|#####2 | 276M/528M [00:01<00:01, 174MB/s]
56%|#####5 | 293M/528M [00:01<00:01, 174MB/s]
59%|#####8 | 310M/528M [00:01<00:01, 174MB/s]
62%|######1 | 326M/528M [00:01<00:01, 173MB/s]
65%|######4 | 343M/528M [00:02<00:01, 173MB/s]
68%|######8 | 359M/528M [00:02<00:01, 172MB/s]
71%|#######1 | 376M/528M [00:02<00:00, 173MB/s]
74%|#######4 | 392M/528M [00:02<00:00, 172MB/s]
78%|#######7 | 409M/528M [00:02<00:00, 173MB/s]
81%|######## | 426M/528M [00:02<00:00, 173MB/s]
84%|########3 | 442M/528M [00:02<00:00, 173MB/s]
87%|########6 | 459M/528M [00:02<00:00, 173MB/s]
90%|######### | 476M/528M [00:02<00:00, 173MB/s]
93%|#########3| 492M/528M [00:02<00:00, 173MB/s]
96%|#########6| 509M/528M [00:03<00:00, 173MB/s]
100%|#########9| 525M/528M [00:03<00:00, 173MB/s]
100%|##########| 528M/528M [00:03<00:00, 176MB/s]
要加载模型权重,首先需要创建相同模型的一个实例,然后使用 load_state_dict()
方法加载参数。
在下面的代码中,我们设置 weights_only=True
,以限制在反序列化过程中仅执行加载权重所需的功能。在加载权重时,使用 weights_only=True
被视为最佳实践。
model = models.vgg16() # we do not specify ``weights``, i.e. create untrained model
model.load_state_dict(torch.load('model_weights.pth', weights_only=True))
model.eval()
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
在进行推理之前,请务必调用
model.eval()
方法,将 dropout 和 batch normalization 层设置为评估模式。如果不这样做,可能会导致不一致的推理结果。
保存和加载带有形状的模型
在加载模型权重时,我们需要先实例化模型类,因为该类定义了网络的结构。我们可能希望将该类的结构与模型一起保存,在这种情况下,我们可以将 model
(而不是 model.state_dict()
)传递给保存函数:
torch.save(model, 'model.pth')
我们可以按照如下所示加载模型。
如 Saving and loading torch.nn.Modules 中所述,保存 state_dict
被认为是最佳实践。然而,由于这里涉及到加载模型,这是一个 torch.save
的遗留用例,因此我们使用了 weights_only=False
。
model = torch.load('model.pth', weights_only=False),
这种方法在序列化模型时使用了 Python 的 pickle 模块,因此在加载模型时需要确保实际的类定义可用。