PyTorch 入门指南
学习 PyTorch
图像和视频
音频
后端
强化学习
在生产环境中部署 PyTorch 模型
Profiling PyTorch
代码变换与FX
前端API
扩展 PyTorch
模型优化
并行和分布式训练
边缘端的 ExecuTorch
推荐系统
多模态

基础知识 || 快速入门 || 张量 || 数据集与数据加载器 || 变换 || 构建模型 || 自动求导 || 优化 || 保存与加载模型

优化模型参数

既然我们已经有了模型和数据,现在是时候通过优化其参数来训练、验证和测试我们的模型了。训练模型是一个迭代的过程;在每次迭代中,模型会对输出进行猜测,计算猜测的误差(损失),收集误差相对于其参数的导数(如我们在前一节中看到的),并使用梯度下降法优化这些参数。关于这一过程的更详细讲解,可以查看3Blue1Brown 的反向传播视频

前置代码

我们加载了前面章节中关于数据集和数据加载器以及构建模型的代码。

importtorch
fromtorchimport nn
fromtorch.utils.dataimport DataLoader
fromtorchvisionimport datasets
fromtorchvision.transformsimport ToTensor

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

classNeuralNetwork(nn.Module):
    def__init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    defforward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()
  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 363kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 680kB/s]
  3%|3         | 918k/26.4M [00:00<00:10, 2.55MB/s]
  7%|7         | 1.93M/26.4M [00:00<00:05, 4.09MB/s]
 25%|##5       | 6.68M/26.4M [00:00<00:01, 15.2MB/s]
 38%|###8      | 10.1M/26.4M [00:00<00:00, 17.4MB/s]
 59%|#####8    | 15.5M/26.4M [00:01<00:00, 26.5MB/s]
 71%|#######   | 18.7M/26.4M [00:01<00:00, 27.7MB/s]
 84%|########4 | 22.2M/26.4M [00:01<00:00, 29.3MB/s]
 97%|#########6| 25.6M/26.4M [00:01<00:00, 27.1MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.3MB/s]

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 328kB/s]

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 360kB/s]
  5%|5         | 229k/4.42M [00:00<00:06, 690kB/s]
 21%|##        | 918k/4.42M [00:00<00:01, 2.65MB/s]
 44%|####3     | 1.93M/4.42M [00:00<00:00, 4.08MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.05MB/s]

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 40.9MB/s]

超参数

超参数是可调节的参数,用于控制模型优化过程。不同的超参数值可能会影响模型的训练和收敛速度(了解更多关于超参数调优的内容)。

我们为训练定义了以下超参数:

  • 迭代次数 (Epochs) - 遍历数据集的次数

  • 批量大小 (Batch Size) - 在更新参数之前通过网络传播的数据样本数量

  • 学习率 (Learning Rate) - 每个批次/迭代时更新模型参数的幅度。较小的值会导致学习速度变慢,而较大的值可能会在训练过程中导致不可预测的行为。

learning_rate = 1e-3
batch_size = 64
epochs = 5

优化循环

一旦我们设置了超参数,就可以通过优化循环来训练和优化我们的模型。优化循环的每一次迭代被称为一个epoch

每个 epoch 包含两个主要部分:

  • 训练循环 - 遍历训练数据集,尝试收敛到最优参数。

  • 验证/测试循环 - 遍历测试数据集,检查模型性能是否在提升。

让我们简要了解一下训练循环中使用的一些概念。跳转到优化循环的完整实现部分。

损失函数

当我们提供一些训练数据时,未经训练的网络很可能无法给出正确的答案。损失函数用于衡量所得结果与目标值之间的差异程度,而训练的目标就是最小化这个损失函数。为了计算损失,我们使用给定数据样本的输入进行预测,并将其与真实的数据标签值进行比较。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差),以及用于分类任务的nn.NLLLoss(负对数似然)。nn.CrossEntropyLoss结合了nn.LogSoftmaxnn.NLLLoss

我们将模型的输出logits传递给nn.CrossEntropyLoss,它将标准化logits并计算预测误差。

# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()

优化器

优化是通过调整模型参数来减少每一步训练中的模型误差的过程。优化算法定义了这一过程是如何执行的(在本例中我们使用随机梯度下降法)。所有的优化逻辑都封装在 optimizer 对象中。这里我们使用 SGD 优化器;此外,PyTorch 中还有许多不同的优化器,如 ADAM 和 RMSProp,它们在不同的模型和数据类型中表现更优。

我们通过注册需要训练的模型参数并传入学习率超参数来初始化优化器。

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

在训练循环中,优化过程分为三个步骤:

  • 调用 optimizer.zero_grad() 来重置模型参数的梯度。默认情况下,梯度会累积;为了防止重复计算,我们在每次迭代时显式地将它们清零。

  • 通过调用 loss.backward() 反向传播预测损失。PyTorch 会计算损失相对于每个参数的梯度。

  • 一旦我们获得了梯度,我们调用 optimizer.step() 来根据反向传播中收集的梯度调整参数。

完整实现

我们定义了 train_loop 来循环执行优化代码,以及 test_loop 来根据测试数据评估模型的性能。

deftrain_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # Set the model to training mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * batch_size + len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


deftest_loop(dataloader, model, loss_fn):
    # Set the model to evaluation mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.eval()
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    # Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
    # also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")

我们初始化损失函数和优化器,并将其传递给 train_looptest_loop。您可以随意增加 epoch 的数量,以跟踪模型性能的提升。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
*------------------------------
loss: 2.298730  [   64/60000]
loss: 2.289123  [ 6464/60000]
loss: 2.273286  [12864/60000]
loss: 2.269406  [19264/60000]
loss: 2.249603  [25664/60000]
loss: 2.229407  [32064/60000]
loss: 2.227368  [38464/60000]
loss: 2.204261  [44864/60000]
loss: 2.206193  [51264/60000]
loss: 2.166651  [57664/60000]
Test Error:
 Accuracy: 50.9%, Avg loss: 2.166725

Epoch 2
*------------------------------
loss: 2.176750  [   64/60000]
loss: 2.169595  [ 6464/60000]
loss: 2.117500  [12864/60000]
loss: 2.129272  [19264/60000]
loss: 2.079674  [25664/60000]
loss: 2.032928  [32064/60000]
loss: 2.050115  [38464/60000]
loss: 1.985236  [44864/60000]
loss: 1.987887  [51264/60000]
loss: 1.907162  [57664/60000]
Test Error:
 Accuracy: 55.9%, Avg loss: 1.915486

Epoch 3
*------------------------------
loss: 1.951612  [   64/60000]
loss: 1.928685  [ 6464/60000]
loss: 1.815709  [12864/60000]
loss: 1.841552  [19264/60000]
loss: 1.732467  [25664/60000]
loss: 1.692914  [32064/60000]
loss: 1.701714  [38464/60000]
loss: 1.610632  [44864/60000]
loss: 1.632870  [51264/60000]
loss: 1.514263  [57664/60000]
Test Error:
 Accuracy: 58.8%, Avg loss: 1.541525

Epoch 4
*------------------------------
loss: 1.616448  [   64/60000]
loss: 1.582892  [ 6464/60000]
loss: 1.427595  [12864/60000]
loss: 1.487950  [19264/60000]
loss: 1.359332  [25664/60000]
loss: 1.364817  [32064/60000]
loss: 1.371491  [38464/60000]
loss: 1.298706  [44864/60000]
loss: 1.336201  [51264/60000]
loss: 1.232145  [57664/60000]
Test Error:
 Accuracy: 62.2%, Avg loss: 1.260237

Epoch 5
*------------------------------
loss: 1.345538  [   64/60000]
loss: 1.327798  [ 6464/60000]
loss: 1.153802  [12864/60000]
loss: 1.254829  [19264/60000]
loss: 1.117322  [25664/60000]
loss: 1.153248  [32064/60000]
loss: 1.171765  [38464/60000]
loss: 1.110263  [44864/60000]
loss: 1.154467  [51264/60000]
loss: 1.070921  [57664/60000]
Test Error:
 Accuracy: 64.1%, Avg loss: 1.089831

Epoch 6
*------------------------------
loss: 1.166889  [   64/60000]
loss: 1.170514  [ 6464/60000]
loss: 0.979435  [12864/60000]
loss: 1.113774  [19264/60000]
loss: 0.973411  [25664/60000]
loss: 1.015192  [32064/60000]
loss: 1.051113  [38464/60000]
loss: 0.993591  [44864/60000]
loss: 1.039709  [51264/60000]
loss: 0.971077  [57664/60000]
Test Error:
 Accuracy: 65.8%, Avg loss: 0.982440

Epoch 7
*------------------------------
loss: 1.045165  [   64/60000]
loss: 1.070583  [ 6464/60000]
loss: 0.862304  [12864/60000]
loss: 1.022265  [19264/60000]
loss: 0.885213  [25664/60000]
loss: 0.919528  [32064/60000]
loss: 0.972762  [38464/60000]
loss: 0.918728  [44864/60000]
loss: 0.961629  [51264/60000]
loss: 0.904379  [57664/60000]
Test Error:
 Accuracy: 66.9%, Avg loss: 0.910167

Epoch 8
*------------------------------
loss: 0.956964  [   64/60000]
loss: 1.002171  [ 6464/60000]
loss: 0.779057  [12864/60000]
loss: 0.958409  [19264/60000]
loss: 0.827240  [25664/60000]
loss: 0.850262  [32064/60000]
loss: 0.917320  [38464/60000]
loss: 0.868384  [44864/60000]
loss: 0.905506  [51264/60000]
loss: 0.856353  [57664/60000]
Test Error:
 Accuracy: 68.3%, Avg loss: 0.858248

Epoch 9
*------------------------------
loss: 0.889765  [   64/60000]
loss: 0.951220  [ 6464/60000]
loss: 0.717035  [12864/60000]
loss: 0.911042  [19264/60000]
loss: 0.786085  [25664/60000]
loss: 0.798370  [32064/60000]
loss: 0.874939  [38464/60000]
loss: 0.832796  [44864/60000]
loss: 0.863254  [51264/60000]
loss: 0.819742  [57664/60000]
Test Error:
 Accuracy: 69.5%, Avg loss: 0.818780

Epoch 10
*------------------------------
loss: 0.836395  [   64/60000]
loss: 0.910220  [ 6464/60000]
loss: 0.668506  [12864/60000]
loss: 0.874338  [19264/60000]
loss: 0.754805  [25664/60000]
loss: 0.758453  [32064/60000]
loss: 0.840451  [38464/60000]
loss: 0.806153  [44864/60000]
loss: 0.830360  [51264/60000]
loss: 0.790281  [57664/60000]
Test Error:
 Accuracy: 71.0%, Avg loss: 0.787271

Done!
本页目录