(测试版)使用缩放点积注意力(SDPA)实现高性能 Transformer
作者: Driss Guessous
概述
在本教程中,我们想重点介绍一个新的 torch.nn.functional
函数,它可能对实现 Transformer 架构有所帮助。该函数名为 torch.nn.functional.scaled_dot_product_attention
。有关该函数的详细描述,请参阅 PyTorch 文档。该函数已被纳入 torch.nn.MultiheadAttention
和 torch.nn.TransformerEncoderLayer
中。
概述
在高层面上,这个 PyTorch 函数根据论文 Attention is all you need 中的定义,计算查询(query)、键(key)和值(value)之间的缩放点积注意力(SDPA)。虽然可以使用现有的 PyTorch 函数来实现这个功能,但一个融合的实现相比简单的实现能够带来显著的性能提升。
融合实现
对于 CUDA 张量输入,该函数将调用以下实现之一:
-
一个用C++定义的PyTorch实现
本教程需要 PyTorch 2.0.0 或更高版本。
importtorch
importtorch.nnasnn
importtorch.nn.functionalasF
device = "cuda" if torch.cuda.is_available() else "cpu"
# Example Usage:
query, key, value = torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device)
F.scaled_dot_product_attention(query, key, value)
tensor([[[-1.3321, -0.3489, 0.3015, -0.3912, 0.9867, 0.3137, -0.0691,
*1.2593],
[-1.0882, 0.2506, 0.6491, 0.1360, 0.5238, -0.2448, -0.0820,
*0.6171],
[-1.0012, 0.3990, 0.6441, -0.0277, 0.5325, -0.2564, -0.0607,
*0.6404]],
[[ 0.6091, 0.0708, 0.6188, 0.3252, -0.1598, 0.4197, -0.2335,
0.0630],
[ 0.5285, 0.3890, -0.2649, 0.3706, -0.3839, 0.1963, -0.6242,
0.2312],
[ 0.4048, 0.0762, 0.3777, 0.4689, -0.2978, 0.2754, -0.6429,
0.1037]]], device='cuda:0')
显式调度控制
虽然该函数会隐式地选择三种实现之一进行调度,但用户也可以通过使用上下文管理器来显式控制调度。该上下文管理器允许用户显式禁用某些实现。如果用户想要确保函数确实针对其特定输入使用了最快的实现,可以使用上下文管理器来遍历并测量性能。
# Lets define a helpful benchmarking function:
importtorch.utils.benchmarkasbenchmark
defbenchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
# Lets define the hyper-parameters of our input
batch_size = 32
max_sequence_len = 1024
num_heads = 32
embed_dimension = 32
dtype = torch.float16
query = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
print(f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention,query,key,value):.3f} microseconds")
# Lets explore the speed of each of the 3 implementations
fromtorch.nn.attentionimport SDPBackend, sdpa_kernel
with sdpa_kernel(SDPBackend.MATH):
math_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
print(f"The math implementation runs in {math_time:.3f} microseconds")
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
try:
flash_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
print(f"The flash attention implementation runs in {flash_time:.3f} microseconds")
except RuntimeError:
print("FlashAttention is not supported. See warnings for reasons.")
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
try:
efficient_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
print(f"The memory efficient implementation runs in {efficient_time:.3f} microseconds")
except RuntimeError:
print("EfficientAttention is not supported. See warnings for reasons.")
The default implementation runs in 2327.164 microseconds
The math implementation runs in 87046.244 microseconds
The flash attention implementation runs in 2334.455 microseconds
The memory efficient implementation runs in 4344.818 microseconds
硬件依赖性
根据您运行上述代码的机器以及可用硬件的不同,您的结果可能会有所不同。
- 如果您没有 GPU 并且在 CPU 上运行,那么使用 FP32 时上下文管理器将不会产生任何影响,三次运行的结果应该相似。
- 根据您的显卡支持的计算能力,flash attention 或 memory efficient 可能会失败。
因果自注意力机制
以下是一个受 Andrej Karpathy NanoGPT 仓库启发的多头因果自注意力块的示例实现。
classCausalSelfAttention(nn.Module):
def__init__(self, num_heads: int, embed_dimension: int, bias: bool=False, is_causal: bool=False, dropout:float=0.0):
super().__init__()
assert embed_dimension % num_heads == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(embed_dimension, 3 * embed_dimension, bias=bias)
# output projection
self.c_proj = nn.Linear(embed_dimension, embed_dimension, bias=bias)
# regularization
self.dropout = dropout
self.resid_dropout = nn.Dropout(dropout)
self.num_heads = num_heads
self.embed_dimension = embed_dimension
# Perform causal masking
self.is_causal = is_causal
defforward(self, x):
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query_projected = self.c_attn(x)
batch_size = query_projected.size(0)
embed_dim = query_projected.size(2)
head_dim = embed_dim // (self.num_heads * 3)
query, key, value = query_projected.chunk(3, -1)
query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
if self.training:
dropout = self.dropout
is_causal = self.is_causal
else:
dropout = 0.0
is_causal = False
y = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=dropout, is_causal=is_causal)
y = y.transpose(1, 2).view(batch_size, -1, self.num_heads * head_dim)
y = self.resid_dropout(self.c_proj(y))
return y
num_heads = 8
heads_per_dim = 64
embed_dimension = num_heads * heads_per_dim
dtype = torch.float16
model = CausalSelfAttention(num_heads=num_heads, embed_dimension=embed_dimension, bias=False, is_causal=True, dropout=0.1).to("cuda").to(dtype).eval()
print(model)
CausalSelfAttention(
(c_attn): Linear(in_features=512, out_features=1536, bias=False)
(c_proj): Linear(in_features=512, out_features=512, bias=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
NestedTensor
和密集张量的支持
SDPA 支持 NestedTensor
和 Dense tensor 输入。NestedTensors
处理输入为一批可变长度序列的情况,而无需将每个序列填充到批次中的最大长度。有关 NestedTensors
的更多信息,请参阅 torch.nested 和 NestedTensors 教程。
importrandom
defgenerate_rand_batch(
batch_size,
max_sequence_len,
embed_dimension,
pad_percentage=None,
dtype=torch.float16,
device="cuda",
):
if not pad_percentage:
return (
torch.randn(
batch_size,
max_sequence_len,
embed_dimension,
dtype=dtype,
device=device,
),
None,
)
# Random sequence lengths
seq_len_list = [
int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
for _ in range(batch_size)
]
# Make random entry in the batch have max sequence length
seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len
return (
torch.nested.nested_tensor(
[
torch.randn(seq_len, embed_dimension,
dtype=dtype, device=device)
for seq_len in seq_len_list
]
),
seq_len_list,
)
random_nt, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=0.5, dtype=dtype, device=device)
random_dense, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=None, dtype=dtype, device=device)
# Currently the fused implementations don't support ``NestedTensor`` for training
model.eval()
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
try:
print(f"Random NT runs in {benchmark_torch_function_in_microseconds(model,random_nt):.3f} microseconds")
print(f"Random Dense runs in {benchmark_torch_function_in_microseconds(model,random_dense):.3f} microseconds")
except RuntimeError:
print("FlashAttention is not supported. See warnings for reasons.")
/usr/local/lib/python3.10/dist-packages/torch/nested/__init__.py:228: UserWarning:
The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.)
Random NT runs in 565.292 microseconds
Random Dense runs in 947.667 microseconds
将 SDPA 与 torch.compile
结合使用
随着 PyTorch 2.0 的发布,引入了一个名为 torch.compile()
的新特性,它可以显著提升性能,超越 eager 模式。缩放点积注意力机制(scaled dot product attention)与 torch.compile()
完全兼容。为了演示这一点,让我们使用 torch.compile()
编译 CausalSelfAttention
模块,并观察由此带来的性能提升。
batch_size = 32
max_sequence_len = 256
x = torch.rand(batch_size, max_sequence_len,
embed_dimension, device=device, dtype=dtype)
print(
f"The non compiled module runs in {benchmark_torch_function_in_microseconds(model,x):.3f} microseconds")
compiled_model = torch.compile(model)
# Let's compile it
compiled_model(x)
print(
f"The compiled module runs in {benchmark_torch_function_in_microseconds(compiled_model,x):.3f} microseconds")
The non compiled module runs in 416.026 microseconds
The compiled module runs in 517.141 microseconds
具体执行时间取决于机器,但我的测试结果如下:未编译模块运行时间为166.616微秒,已编译模块运行时间为166.726微秒。这并不是我们所预期的结果。让我们进一步深入分析。PyTorch自带了一个非常强大的内置分析器,您可以使用它来检查代码的性能特征。
fromtorch.profilerimport profile, record_function, ProfilerActivity
activities = [ProfilerActivity.CPU]
if device == 'cuda':
activities.append(ProfilerActivity.CUDA)
with profile(activities=activities, record_shapes=False) as prof:
with record_function(" Non-Compilied Causal Attention"):
for _ in range(25):
model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
with profile(activities=activities, record_shapes=False) as prof:
with record_function("Compiled Causal Attention"):
for _ in range(25):
compiled_model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
# For even more insights, you can export the trace and use ``chrome://tracing`` to view the results
#
# .. code-block:: python
#
# prof.export_chrome_trace("compiled_causal_attention_trace.json").
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Non-Compilied Causal Attention 0.00% 0.000us 0.00% 0.000us 0.000us 10.537ms 101.58% 10.537ms 10.537ms 1
Non-Compilied Causal Attention 20.52% 2.265ms 77.21% 8.521ms 8.521ms 0.000us 0.00% 10.373ms 10.373ms 1
aten::linear 1.17% 129.613us 28.65% 3.162ms 63.236us 0.000us 0.00% 7.767ms 155.333us 50
aten::matmul 2.43% 268.403us 24.54% 2.708ms 54.153us 0.000us 0.00% 7.767ms 155.333us 50
aten::mm 15.35% 1.694ms 19.77% 2.182ms 43.639us 7.767ms 74.87% 7.767ms 155.333us 50
ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn 0.00% 0.000us 0.00% 0.000us 0.000us 5.566ms 53.65% 5.566ms 222.628us 25
aten::scaled_dot_product_attention 2.01% 221.551us 18.30% 2.020ms 80.800us 0.000us 0.00% 2.607ms 104.261us 25
aten::_scaled_dot_product_flash_attention 3.08% 340.394us 16.30% 1.798ms 71.938us 0.000us 0.00% 2.607ms 104.261us 25
aten::_flash_attention_forward 3.62% 399.344us 11.44% 1.262ms 50.496us 2.607ms 25.13% 2.607ms 104.261us 25
void pytorch_flash::flash_fwd_kernel<pytorch_flash::... 0.00% 0.000us 0.00% 0.000us 0.000us 2.607ms 25.13% 2.607ms 104.261us 25
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Self CPU time total: 11.036ms
Self CUDA time total: 10.373ms
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Compiled Causal Attention 0.00% 0.000us 0.00% 0.000us 0.000us 10.496ms 101.10% 10.496ms 10.496ms 1
Compiled Causal Attention 9.52% 1.061ms 78.15% 8.706ms 8.706ms 0.000us 0.00% 10.382ms 10.382ms 1
Torch-Compiled Region: 2/0 8.70% 969.588us 66.49% 7.407ms 296.283us 0.000us 0.00% 10.382ms 415.288us 25
CompiledFunction 27.45% 3.058ms 57.79% 6.437ms 257.499us 0.000us 0.00% 10.382ms 415.288us 25
aten::mm 9.95% 1.108ms 15.08% 1.680ms 33.596us 7.766ms 74.80% 7.766ms 155.315us 50
ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn 0.00% 0.000us 0.00% 0.000us 0.000us 5.563ms 53.58% 5.563ms 222.509us 25
aten::_scaled_dot_product_flash_attention 2.29% 254.914us 15.26% 1.700ms 67.991us 0.000us 0.00% 2.616ms 104.657us 25
aten::_flash_attention_forward 3.69% 411.523us 11.15% 1.242ms 49.669us 2.616ms 25.20% 2.616ms 104.657us 25
void pytorch_flash::flash_fwd_kernel<pytorch_flash::... 0.00% 0.000us 0.00% 0.000us 0.000us 2.616ms 25.20% 2.616ms 104.657us 25
ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_stages_3... 0.00% 0.000us 0.00% 0.000us 0.000us 2.203ms 21.22% 2.203ms 88.122us 25
*------------------------------------------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Self CPU time total: 11.140ms
Self CUDA time total: 10.382ms
上述代码片段生成了一个报告,展示了在编译和非编译模块中消耗 GPU 执行时间最多的前 10 个 PyTorch 函数。分析表明,两个模块在 GPU 上花费的大部分时间都集中在同一组函数上。原因在于,torch.compile
非常擅长消除与 PyTorch 相关的框架开销。如果您的模型启动了高效的大型 CUDA 内核(在本例中为 CausalSelfAttention
),那么 PyTorch 的开销就可以被掩盖。
实际上,您的模块通常并不只包含一个单一的 CausalSelfAttention
模块。在实验 Andrej Karpathy NanoGPT 仓库时,编译该模块将每个训练步骤的时间从 6090.49ms
缩短到了 3273.17ms
!这是在提交 ae3a8d5
上进行的,该提交是在 Shakespeare 数据集上训练 NanoGPT 的版本。
在 attn_bias 子类中使用 SDPA
# As of PyTorch 2.3, we have added a new submodule that contains tensor subclasses.
# Designed to be used with ``torch.nn.functional.scaled_dot_product_attention``.
# The module is named ``torch.nn.attention.bias`` and contains the following two
# utilities for generating causal attention variants:
#
# - ``torch.nn.attention.bias.causal_upper_left``
# - ``torch.nn.attention.bias.causal_lower_right``
#
# .. note::
# The current argument ``is_causal`` in ``torch.nn.functional.scaled_dot_product_attention``
# is the same as using ``torch.nn.attention.bias.causal_upper_left``.
#
fromtorch.nn.attention.biasimport causal_lower_right, causal_upper_left
batch_size = 32
sequence_length_q = 2
sequence_length_kv = 10
num_heads = 16
embed_dimension = 32
dtype = torch.float16
query = torch.rand(batch_size, num_heads, sequence_length_q, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)
upper_left_bias = causal_upper_left(sequence_length_q, sequence_length_kv)
lower_right_bias = causal_lower_right(sequence_length_q, sequence_length_kv)
print(type(upper_left_bias))
print(type(lower_right_bias))
assert type(upper_left_bias) == type(lower_right_bias)
assert issubclass(type(upper_left_bias), torch.Tensor)
# As you can see from the previous output, are the same type ``torch.nn.attention.bias.CausalBias``
# and subclass ``torch.Tensor``
# Lets see what these tensors look like
print(upper_left_bias)
print(lower_right_bias)
# Upper Left Bias aligns the causal attention mask to the upper left corner of the attention scores matrix.
# This only has an impact when the attention scores matrix is not square, which is common for decoding use cases.
# Another way of thinking about this concept is that when you use upper left bias,
# the 0th token in the query is aligned to the 0th token in the key, while for lower right bias,
# Assuming the attention score matrix is two dimensional, ``attn_score[0][0]`` is the attention score
# between the 0th token in the query and the 0th token in the key.
# For lower right bias, the sequence of q is aligned so that the last token in q is aligned to the last token in k
# (for example, ``attn_score[-1][-1])`` is all True since the last token in q is at the same position as the last token in k
# even if the sequence length of q and k are different.
# These objects are intended to be used with sdpa
out_upper_left = F.scaled_dot_product_attention(query, key, value, upper_left_bias)
out_lower_right = F.scaled_dot_product_attention(query, key, value, lower_right_bias)
out_is_causal = F.scaled_dot_product_attention(query, key, value, is_causal=True)
assert torch.allclose(out_upper_left, out_is_causal)
assert not torch.allclose(out_upper_left, out_lower_right)
# These attention biases should also be compatible with torch.compile
compiled_sdpa = torch.compile(F.scaled_dot_product_attention, fullgraph=True)
out_upper_left = compiled_sdpa(query, key, value, upper_left_bias)
<class 'torch.nn.attention.bias.CausalBias'>
<class 'torch.nn.attention.bias.CausalBias'>
tensor([[ True, False, False, False, False, False, False, False, False, False],
[ True, True, False, False, False, False, False, False, False, False]])
tensor([[ True, True, True, True, True, True, True, True, True, False],
[ True, True, True, True, True, True, True, True, True, True]])
总结
在本教程中,我们演示了 torch.nn.functional.scaled_dot_product_attention
的基本用法。我们展示了如何使用 sdpa_kernel
上下文管理器来确保在 GPU 上使用特定的实现。此外,我们构建了一个简单的 CausalSelfAttention
模块,该模块与 NestedTensor
兼容并且可被 torch 编译。在此过程中,我们还展示了如何使用性能分析工具来探索用户定义模块的性能特征。