PyTorch 入门指南
学习 PyTorch
图像和视频
音频
后端
强化学习
在生产环境中部署 PyTorch 模型
Profiling PyTorch
代码变换与FX
前端API
扩展 PyTorch
模型优化
并行和分布式训练
边缘端的 ExecuTorch
推荐系统
多模态

(测试版) 在 FX 中构建卷积/批归一化融合器

作者: Horace He

在本教程中,我们将使用 FX,一个用于 PyTorch 可组合函数变换的工具包,来完成以下任务:

  1. 在数据依赖关系中找到卷积/批归一化的模式。

  2. 对于在步骤1中找到的模式,将批归一化统计量折叠到卷积权重中。

请注意,此优化仅适用于处于推理模式下的模型(即 mode.eval())。

我们将构建位于此处的融合器:https://github.com/pytorch/pytorch/blob/orig/release/1.8/torch/fx/experimental/fuser.py

首先,让我们先导入一些必要的库(稍后我们将在代码中使用这些库)。

fromtypingimport Type, Dict, Any, Tuple, Iterable
importcopy
importtorch.fxasfx
importtorch
importtorch.nnasnn

在本教程中,我们将创建一个包含卷积和批量归一化层的模型。需要注意的是,这个模型包含了一些复杂的组件——部分卷积/批量归一化模式被隐藏在 Sequential 中,并且其中一个 BatchNorm 被包裹在另一个 Module 中。

classWrappedBatchNorm(nn.Module):
    def__init__(self):
        super().__init__()
        self.mod = nn.BatchNorm2d(1)
    defforward(self, x):
        return self.mod(x)

classM(nn.Module):
    def__init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 1, 1)
        self.bn1 = nn.BatchNorm2d(1)
        self.conv2 = nn.Conv2d(1, 1, 1)
        self.nested = nn.Sequential(
            nn.BatchNorm2d(1),
            nn.Conv2d(1, 1, 1),
        )
        self.wrapped = WrappedBatchNorm()

    defforward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.nested(x)
        x = self.wrapped(x)
        return x

model = M()

model.eval()

卷积与批归一化的融合

在 PyTorch 中尝试自动融合卷积和批归一化的主要挑战之一是 PyTorch 没有提供一种简便的方式来访问计算图。FX 通过符号化跟踪实际调用的操作解决了这个问题,使我们能够通过前向调用、嵌套在 Sequential 模块中的计算或用户自定义模块中的计算来追踪这些操作。

traced_model = torch.fx.symbolic_trace(model)
print(traced_model.graph)

这为我们提供了模型的图形表示。请注意,顺序模块中隐藏的模块以及被包装的模块都已内联到图形中。这是默认的抽象级别,但可以通过传递编写器进行配置。更多信息可以在 FX 概述 中找到。

卷积与批归一化的融合

与其他一些融合不同,卷积与批归一化的融合不需要引入新的操作符。相反,由于推理过程中的批归一化只包含逐点的加法和乘法操作,这些操作可以被“烘焙”到前一个卷积的权重中。这使得我们能够完全从模型中移除批归一化!更多详细信息请阅读https://nenadmarkus.com/p/fusing-batchnorm-and-conv/。出于清晰考虑,这里的代码复制自https://github.com/pytorch/pytorch/blob/orig/release/1.8/torch/nn/utils/fusion.py

deffuse_conv_bn_eval(conv, bn):
"""
    Given a conv Module `A` and an batch_norm module `B`, returns a conv
    module `C` such that C(x) == B(A(x)) in inference mode.
    """
    assert(not (conv.training or bn.training)), "Fusion only for eval!"
    fused_conv = copy.deepcopy(conv)

    fused_conv.weight, fused_conv.bias = \
        fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias,
                             bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias)

    return fused_conv

deffuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
    if conv_b is None:
        conv_b = torch.zeros_like(bn_rm)
    if bn_w is None:
        bn_w = torch.ones_like(bn_rm)
    if bn_b is None:
        bn_b = torch.zeros_like(bn_rm)
    bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)

    conv_w = conv_w * (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
    conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b

    return torch.nn.Parameter(conv_w), torch.nn.Parameter(conv_b)

FX 融合过程

既然我们已经有了计算图以及融合卷积和批量归一化的方法,剩下的就是遍历 FX 图并应用所需的融合操作。

def_parent_name(target : str) -> Tuple[str, str]:
"""
    Splits a ``qualname`` into parent path and last atom.
    For example, `foo.bar.baz` -> (`foo.bar`, `baz`)
    """
    *parent, name = target.rsplit('.', 1)
    return parent[0] if parent else '', name

defreplace_node_module(node: fx.Node, modules: Dict[str, Any], new_module: torch.nn.Module):
    assert(isinstance(node.target, str))
    parent_name, name = _parent_name(node.target)
    setattr(modules[parent_name], name, new_module)


deffuse(model: torch.nn.Module) -> torch.nn.Module:
    model = copy.deepcopy(model)
    # The first step of most FX passes is to symbolically trace our model to
    # obtain a `GraphModule`. This is a representation of our original model
    # that is functionally identical to our original model, except that we now
    # also have a graph representation of our forward pass.
    fx_model: fx.GraphModule = fx.symbolic_trace(model)
    modules = dict(fx_model.named_modules())

    # The primary representation for working with FX are the `Graph` and the
    # `Node`. Each `GraphModule` has a `Graph` associated with it - this
    # `Graph` is also what generates `GraphModule.code`.
    # The `Graph` itself is represented as a list of `Node` objects. Thus, to
    # iterate through all of the operations in our graph, we iterate over each
    # `Node` in our `Graph`.
    for node in fx_model.graph.nodes:
        # The FX IR contains several types of nodes, which generally represent
        # call sites to modules, functions, or methods. The type of node is
        # determined by `Node.op`.
        if node.op != 'call_module': # If our current node isn't calling a Module then we can ignore it.
            continue
        # For call sites, `Node.target` represents the module/function/method
        # that's being called. Here, we check `Node.target` to see if it's a
        # batch norm module, and then check `Node.args[0].target` to see if the
        # input `Node` is a convolution.
        if type(modules[node.target]) is nn.BatchNorm2d and type(modules[node.args[0].target]) is nn.Conv2d:
            if len(node.args[0].users) > 1:  # Output of conv is used by other nodes
                continue
            conv = modules[node.args[0].target]
            bn = modules[node.target]
            fused_conv = fuse_conv_bn_eval(conv, bn)
            replace_node_module(node.args[0], modules, fused_conv)
            # As we've folded the batch nor into the conv, we need to replace all uses
            # of the batch norm with the conv.
            node.replace_all_uses_with(node.args[0])
            # Now that all uses of the batch norm have been replaced, we can
            # safely remove the batch norm.
            fx_model.graph.erase_node(node)
    fx_model.graph.lint()
    # After we've modified our graph, we need to recompile our graph in order
    # to keep the generated code in sync.
    fx_model.recompile()
    return fx_model

为了演示目的,我们在此进行了一些简化,例如仅匹配2D卷积。查看 https://github.com/pytorch/pytorch/blob/master/torch/fx/experimental/fuser.py 以获取更实用的方法。

测试我们的融合过程

我们现在可以在初始的玩具模型上运行这个融合过程,并验证我们的结果是否一致。此外,我们可以打印出融合后的模型代码,并确认不再存在批量归一化层。

fused_model = fuse(model)
print(fused_model.code)
inp = torch.randn(5, 1, 1, 1)
torch.testing.assert_allclose(fused_model(inp), model(inp))

我们的 Fusion 在 ResNet18 上的性能基准测试

我们可以在更大的模型(如 ResNet18)上测试我们的融合优化,看看这一优化能在多大程度上提升推理性能。

importtorchvision.modelsasmodels
importtime

rn18 = models.resnet18()
rn18.eval()

inp = torch.randn(10, 3, 224, 224)
output = rn18(inp)

defbenchmark(model, iters=20):
    for _ in range(10):
        model(inp)
    begin = time.time()
    for _ in range(iters):
        model(inp)
    return str(time.time()-begin)

fused_rn18 = fuse(rn18)
print("Unfused time: ", benchmark(rn18))
print("Fused time: ", benchmark(fused_rn18))

正如我们之前所见,FX转换的输出是(“可torchscript化的”)PyTorch代码,我们可以轻松地使用jit.script对输出进行处理,以尝试进一步提升性能。通过这种方式,我们的FX模型转换与TorchScript无缝结合,没有任何问题。

jit_rn18 = torch.jit.script(fused_rn18)
print("jit time: ", benchmark(jit_rn18))


############
# Conclusion
# ----------
# As we can see, using FX we can easily write static graph transformations on
# PyTorch code.
#
# Since FX is still in beta, we would be happy to hear any
# feedback you have about using it. Please feel free to use the
# PyTorch Forums (https://discuss.pytorch.org/) and the issue tracker
# (https://github.com/pytorch/pytorch/issues) to provide any feedback
# you might have.
本页目录