(测试版)在 PyTorch 中使用 Eager 模式进行静态量化
作者: Raghuraman Krishnamoorthi 编辑: Seth Weidman, Jerry Zhang
本教程展示了如何进行训练后静态量化,并介绍了两种更高级的技术——逐通道量化和量化感知训练——以进一步提高模型的准确性。请注意,量化目前仅支持 CPU,因此在本教程中我们不会使用 GPU / CUDA。通过本教程的学习,您将看到 PyTorch 中的量化如何显著减少模型大小并提高速度。此外,您还将了解如何轻松应用一些高级量化技术,如此处所示,从而使您的量化模型减少精度损失。警告:我们使用了许多来自其他 PyTorch 仓库的样板代码,例如定义 MobileNetV2
模型架构、定义数据加载器等。我们当然鼓励您阅读这些代码;但如果您想直接了解量化功能,可以跳到“4. 训练后静态量化”部分。我们将从进行必要的导入开始:
importos
importsys
importtime
importnumpyasnp
importtorch
importtorch.nnasnn
fromtorch.utils.dataimport DataLoader
importtorchvision
fromtorchvisionimport datasets
importtorchvision.transformsastransforms
# Set up warnings
importwarnings
warnings.filterwarnings(
action='ignore',
category=DeprecationWarning,
module=r'.*'
)
warnings.filterwarnings(
action='default',
module=r'torch.ao.quantization'
)
# Specify random seed for repeatable results
torch.manual_seed(191009)
1. 模型架构
我们首先定义 MobileNetV2 模型架构,并进行了一些显著的修改以实现量化:
-
使用
nn.quantized.FloatFunctional
替换加法操作 -
在网络的开头和结尾插入
QuantStub
和DeQuantStub
-
将 ReLU6 替换为 ReLU
注意:此代码取自这里。
fromtorch.ao.quantizationimport QuantStub, DeQuantStub
def_make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
classConvBNReLU(nn.Sequential):
def__init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes, momentum=0.1),
# Replace with ReLU
nn.ReLU(inplace=False)
)
classInvertedResidual(nn.Module):
def__init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup, momentum=0.1),
])
self.conv = nn.Sequential(*layers)
# Replace torch.add with floatfunctional
self.skip_add = nn.quantized.FloatFunctional()
defforward(self, x):
if self.use_res_connect:
return self.skip_add.add(x, self.conv(x))
else:
return self.conv(x)
classMobileNetV2(nn.Module):
def__init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
# make it nn.Sequential
self.features = nn.Sequential(*features)
self.quant = QuantStub()
self.dequant = DeQuantStub()
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
defforward(self, x):
x = self.quant(x)
x = self.features(x)
x = x.mean([2, 3])
x = self.classifier(x)
x = self.dequant(x)
return x
# Fuse Conv+BN and Conv+BN+Relu modules prior to quantization
# This operation does not change the numerics
deffuse_model(self, is_qat=False):
fuse_modules = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules
for m in self.modules():
if type(m) == ConvBNReLU:
fuse_modules(m, ['0', '1', '2'], inplace=True)
if type(m) == InvertedResidual:
for idx in range(len(m.conv)):
if type(m.conv[idx]) == nn.Conv2d:
fuse_modules(m.conv, [str(idx), str(idx + 1)], inplace=True)
2. 辅助函数
接下来,我们定义了几个辅助函数来帮助进行模型评估。这些函数主要来自于这里。
classAverageMeter(object):
"""Computes and stores the average and current value"""
def__init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
defreset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
defupdate(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def__str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
defaccuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
defevaluate(model, criterion, data_loader, neval_batches):
model.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
cnt = 0
with torch.no_grad():
for image, target in data_loader:
output = model(image)
loss = criterion(output, target)
cnt += 1
acc1, acc5 = accuracy(output, target, topk=(1, 5))
print('.', end = '')
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
if cnt >= neval_batches:
return top1, top5
return top1, top5
defload_model(model_file):
model = MobileNetV2()
state_dict = torch.load(model_file, weights_only=True)
model.load_state_dict(state_dict)
model.to('cpu')
return model
defprint_size_of_model(model):
torch.save(model.state_dict(), "temp.p")
print('Size (MB):', os.path.getsize("temp.p")/1e6)
os.remove('temp.p')
3. 定义数据集和数据加载器
作为我们最后一个主要的设置步骤,我们为训练集和测试集定义数据加载器。
ImageNet 数据
要使用完整的 ImageNet 数据集运行本教程中的代码,首先按照 ImageNet Data 上的说明下载 ImageNet。将下载的文件解压到 'data_path' 文件夹中。
下载数据后,我们展示了下面的函数,这些函数定义了我们将用于读取这些数据的 dataloaders。这些函数主要来自 这里。
defprepare_data_loaders(data_path):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
dataset = torchvision.datasets.ImageNet(
data_path, split="train", transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
dataset_test = torchvision.datasets.ImageNet(
data_path, split="val", transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=train_batch_size,
sampler=train_sampler)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=eval_batch_size,
sampler=test_sampler)
return data_loader, data_loader_test
接下来,我们将加载预训练的 MobileNetV2 模型。我们提供了下载模型的 URL 这里。
data_path = '~/.data/imagenet'
saved_model_dir = 'data/'
float_model_file = 'mobilenet_pretrained_float.pth'
scripted_float_model_file = 'mobilenet_quantization_scripted.pth'
scripted_quantized_model_file = 'mobilenet_quantization_scripted_quantized.pth'
train_batch_size = 30
eval_batch_size = 50
data_loader, data_loader_test = prepare_data_loaders(data_path)
criterion = nn.CrossEntropyLoss()
float_model = load_model(saved_model_dir + float_model_file).to('cpu')
# Next, we'll "fuse modules"; this can both make the model faster by saving on memory access
# while also improving numerical accuracy. While this can be used with any model, this is
# especially common with quantized models.
print('\n Inverted Residual Block: Before fusion \n\n', float_model.features[1].conv)
float_model.eval()
# Fuses modules
float_model.fuse_model()
# Note fusion of Conv+BN+Relu and Conv+Relu
print('\n Inverted Residual Block: After fusion\n\n',float_model.features[1].conv)
最后,为了获得一个“基准”准确率,让我们看一下未量化的模型(包含融合模块)的准确率。
num_eval_batches = 1000
print("Size of baseline model")
print_size_of_model(float_model)
top1, top5 = evaluate(float_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
torch.jit.save(torch.jit.script(float_model), saved_model_dir + scripted_float_model_file)
在整个模型上,我们在包含 50,000 张图片的评估数据集上获得了 71.9% 的准确率。
这将作为我们进行比较的基线。接下来,让我们尝试不同的量化方法。
4. 训练后静态量化
训练后静态量化不仅涉及将权重从浮点数转换为整数(如动态量化),还包括额外的一步:首先通过网络传递数据批次,并计算不同激活的分布(具体来说,这是通过在网络中插入观察者模块来记录这些数据完成的)。然后,这些分布用于确定在推理时应如何具体量化不同的激活(一种简单的方法是将整个激活范围划分为256个级别,但我们也支持更复杂的方法)。重要的是,这一额外步骤允许我们在操作之间传递量化值,而不是在每次操作之间将这些值转换为浮点数然后再转换回整数,从而显著提高了速度。
num_calibration_batches = 32
myModel = load_model(saved_model_dir + float_model_file).to('cpu')
myModel.eval()
# Fuse Conv, bn and relu
myModel.fuse_model()
# Specify quantization configuration
# Start with simple min/max range estimation and per-tensor quantization of weights
myModel.qconfig = torch.ao.quantization.default_qconfig
print(myModel.qconfig)
torch.ao.quantization.prepare(myModel, inplace=True)
# Calibrate first
print('Post Training Quantization Prepare: Inserting Observers')
print('\n Inverted Residual Block:After observer insertion \n\n', myModel.features[1].conv)
# Calibrate with the training set
evaluate(myModel, criterion, data_loader, neval_batches=num_calibration_batches)
print('Post Training Quantization: Calibration done')
# Convert to quantized model
torch.ao.quantization.convert(myModel, inplace=True)
# You may see a user warning about needing to calibrate the model. This warning can be safely ignored.
# This warning occurs because not all modules are run in each model runs, so some
# modules may not be calibrated.
print('Post Training Quantization: Convert done')
print('\n Inverted Residual Block: After fusion and quantization, note fused modules: \n\n',myModel.features[1].conv)
print("Size of model after quantization")
print_size_of_model(myModel)
top1, top5 = evaluate(myModel, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
对于这个量化模型,我们在评估数据集上的精度达到了 56.7%。这是因为我们使用了一个简单的 min/max 观察器来确定量化参数。尽管如此,我们将模型的大小减少到了不到 3.6 MB,几乎减少了 4 倍。
此外,通过使用不同的量化配置,我们可以显著提高精度。我们使用推荐的量化配置针对 x86 架构重复了相同的操作。该配置执行以下操作:
-
基于每个通道对权重进行量化
-
使用直方图观察器收集激活值的直方图,并以最优方式选择量化参数。
per_channel_quantized_model = load_model(saved_model_dir + float_model_file)
per_channel_quantized_model.eval()
per_channel_quantized_model.fuse_model()
# The old 'fbgemm' is still available but 'x86' is the recommended default.
per_channel_quantized_model.qconfig = torch.ao.quantization.get_default_qconfig('x86')
print(per_channel_quantized_model.qconfig)
torch.ao.quantization.prepare(per_channel_quantized_model, inplace=True)
evaluate(per_channel_quantized_model,criterion, data_loader, num_calibration_batches)
torch.ao.quantization.convert(per_channel_quantized_model, inplace=True)
top1, top5 = evaluate(per_channel_quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
torch.jit.save(torch.jit.script(per_channel_quantized_model), saved_model_dir + scripted_quantized_model_file)
仅更改此量化配置方法就使准确率提升至超过 67.3%!然而,这仍比之前达到的 71.9% 基准低 4%。因此,让我们尝试量化感知训练。
5. 量化感知训练
量化感知训练(QAT)通常是精度最高的量化方法。在QAT中,训练的前向传播和反向传播过程中,所有的权重和激活值都会被“伪量化”:即浮点值被四舍五入以模拟int8值,但所有计算仍然使用浮点数进行。因此,训练期间的所有权重调整都是在“知晓”模型最终会被量化的前提下进行的;因此,在量化之后,这种方法通常会比动态量化或训练后静态量化获得更高的精度。
实际执行 QAT(量化感知训练)的整体流程与之前非常相似:
-
我们可以使用与之前相同的模型:量化感知训练不需要额外的准备工作。
-
我们需要使用一个
qconfig
来指定在权重和激活之后插入哪种类型的伪量化,而不是指定观察器。
我们首先定义一个训练函数:
deftrain_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
model.train()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
avgloss = AverageMeter('Loss', '1.5f')
cnt = 0
for image, target in data_loader:
start_time = time.time()
print('.', end = '')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
avgloss.update(loss, image.size(0))
if cnt >= ntrain_batches:
print('Loss', avgloss.avg)
print('Training: * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return
print('Full imagenet train set: * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=top1, top5=top5))
return
我们像之前一样融合模块
qat_model = load_model(saved_model_dir + float_model_file)
qat_model.fuse_model(is_qat=True)
optimizer = torch.optim.SGD(qat_model.parameters(), lr = 0.0001)
# The old 'fbgemm' is still available but 'x86' is the recommended default.
qat_model.qconfig = torch.ao.quantization.get_default_qat_qconfig('x86')
最后,prepare_qat
执行“伪量化”,为量化感知训练准备模型。
torch.ao.quantization.prepare_qat(qat_model, inplace=True)
print('Inverted Residual Block: After preparation for QAT, note fake-quantization modules \n',qat_model.features[1].conv)
训练一个高精度的量化模型需要在推理时对数值进行精确建模。因此,对于量化感知训练,我们通过对训练循环进行以下修改来实现:
-
在训练接近尾声时,将批归一化切换到使用运行均值和方差,以更好地匹配推理时的数值计算。
-
我们还会冻结量化器参数(缩放因子和零点),并对权重进行微调。
num_train_batches = 20
# QAT takes time and one needs to train over a few epochs.
# Train and check accuracy after each epoch
for nepoch in range(8):
train_one_epoch(qat_model, criterion, optimizer, data_loader, torch.device('cpu'), num_train_batches)
if nepoch > 3:
# Freeze quantizer parameters
qat_model.apply(torch.ao.quantization.disable_observer)
if nepoch > 2:
# Freeze batch norm mean and variance estimates
qat_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
# Check the accuracy after each epoch
quantized_model = torch.ao.quantization.convert(qat_model.eval(), inplace=False)
quantized_model.eval()
top1, top5 = evaluate(quantized_model,criterion, data_loader_test, neval_batches=num_eval_batches)
print('Epoch %d :Evaluation accuracy on %d images, %2.2f'%(nepoch, num_eval_batches * eval_batch_size, top1.avg))
量化感知训练在整个 ImageNet 数据集上达到了超过 71.5% 的准确率,接近于浮点精度的 71.9%。
更多关于量化感知训练的内容:
-
QAT(量化感知训练)是后训练量化技术的一个超集,它允许进行更多的调试。例如,我们可以分析模型的精度是否受到权重或激活量化的限制。
-
由于我们使用伪量化来模拟实际量化算术的数值特性,因此我们还可以在浮点数中模拟量化模型的精度。
-
我们也可以轻松地模拟后训练量化。
量化带来的加速效果
最后,我们来确认一下之前提到的一点:我们的量化模型是否真的能加快推理速度?让我们来测试一下:
defrun_benchmark(model_file, img_loader):
elapsed = 0
model = torch.jit.load(model_file)
model.eval()
num_batches = 5
# Run the scripted model on a few batches of images
for i, (images, target) in enumerate(img_loader):
if i < num_batches:
start = time.time()
output = model(images)
end = time.time()
elapsed = elapsed + (end-start)
else:
break
num_images = images.size()[0] * num_batches
print('Elapsed time: %3.0f ms' % (elapsed/num_images*1000))
return elapsed
run_benchmark(saved_model_dir + scripted_float_model_file, data_loader_test)
run_benchmark(saved_model_dir + scripted_quantized_model_file, data_loader_test)
在 MacBook Pro 上本地运行此模型时,常规模型的执行时间为 61 毫秒,而量化模型仅需 20 毫秒,这表明量化模型相比浮点模型通常有 2-4 倍的加速效果。
结论
在本教程中,我们展示了两种量化方法——训练后静态量化和量化感知训练——解释了它们“底层”的工作原理以及如何在 PyTorch 中使用它们。
感谢阅读!一如既往,我们欢迎任何反馈,因此如果您有任何问题,请在此处创建问题 here。