PyTorch 入门指南
学习 PyTorch
图像和视频
音频
后端
强化学习
在生产环境中部署 PyTorch 模型
Profiling PyTorch
代码变换与FX
前端API
扩展 PyTorch
模型优化
并行和分布式训练
边缘端的 ExecuTorch
推荐系统
多模态

探索 TorchRec 分片

本教程将主要介绍通过 EmbeddingPlannerDistributedModelParallel API 对嵌入表进行分片的方法,并通过显式配置这些分片方案,探讨不同分片方案对嵌入表的优势。

安装

要求:- Python >= 3.7

我们强烈建议在使用 torchRec 时使用 CUDA。如果使用 CUDA:- CUDA >= 11.0

# install conda to make installying pytorch with cudatoolkit 11.3 easier.
!sudo rm Miniconda3-py37_4.9.2-Linux-x86_64.sh Miniconda3-py37_4.9.2-Linux-x86_64.sh.*
!sudo wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
# install pytorch with cudatoolkit 11.3
!sudo conda install pytorch cudatoolkit=11.3 -c pytorch-nightly -y

安装 torchRec 也将同时安装 FBGEMM,这是一个包含 CUDA 内核和 GPU 支持操作的集合,用于运行相关任务。

# install torchrec
!pip3 install torchrec-nightly

安装 multiprocess,它与 ipython 配合使用,以便在 colab 中进行多进程编程。

!pip3 install multiprocess

为了让 Colab 运行时检测到添加的共享库,需要执行以下步骤。运行时会搜索 /usr/lib 中的共享库,因此我们需要将安装在 /usr/local/lib/ 中的库复制过去。这是一个非常必要的步骤,但仅适用于 Colab 运行时

!sudo cp /usr/local/lib/lib* /usr/lib/

此时请重启您的运行时环境,以便新安装的包能够被识别。 重启后立即运行以下步骤,以便 Python 知道在哪里查找这些包。每次重启运行时环境后,请务必运行此步骤。

importsys
sys.path = ['', '/env/python', '/usr/local/lib/python37.zip', '/usr/local/lib/python3.7', '/usr/local/lib/python3.7/lib-dynload', '/usr/local/lib/python3.7/site-packages', './.local/lib/python3.7/site-packages']

分布式设置

由于笔记本环境的限制,我们无法在此运行 SPMD 程序,但可以在笔记本内进行多进程处理以模拟该设置。用户在使用 Torchrec 时应自行负责设置其 SPMD 启动器。我们已配置好环境,以便基于 Torch 分布式通信的后端能够正常工作。

importos
importtorch
importtorchrec

os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"

构建我们的嵌入模型

在这里,我们使用 TorchRec 提供的 EmbeddingBagCollection 来构建我们的嵌入包模型。

这里,我们创建了一个包含四个嵌入包的 EmbeddingBagCollection (EBC)。我们有两种类型的表:大表和小表,通过它们的行大小差异来区分:4096 对 1024。每个表仍然由 64 维嵌入表示。

我们为这些表配置了 ParameterConstraints 数据结构,它为模型并行 API 提供了提示,以帮助决定表的分片和放置策略。在 TorchRec 中,我们支持以下策略:

  • table-wise:将整个表放置在一个设备上;
  • row-wise:按行维度均匀分片表,并将每个分片放置在通信世界中的每个设备上;
  • column-wise:按嵌入维度均匀分片表,并将每个分片放置在通信世界中的每个设备上;
  • table-row-wise:针对可用快速机内设备互连(例如 NVLink)优化的特殊分片策略;
  • data_parallel:为每个设备复制表。

请注意我们是如何在设备“meta”上初始分配 EBC 的。这将指示 EBC 暂时不分配内存。

fromtorchrec.distributed.planner.typesimport ParameterConstraints
fromtorchrec.distributed.embedding_typesimport EmbeddingComputeKernel
fromtorchrec.distributed.typesimport ShardingType
fromtypingimport Dict

large_table_cnt = 2
small_table_cnt = 2
large_tables=[
  torchrec.EmbeddingBagConfig(
    name="large_table_" + str(i),
    embedding_dim=64,
    num_embeddings=4096,
    feature_names=["large_table_feature_" + str(i)],
    pooling=torchrec.PoolingType.SUM,
  ) for i in range(large_table_cnt)
]
small_tables=[
  torchrec.EmbeddingBagConfig(
    name="small_table_" + str(i),
    embedding_dim=64,
    num_embeddings=1024,
    feature_names=["small_table_feature_" + str(i)],
    pooling=torchrec.PoolingType.SUM,
  ) for i in range(small_table_cnt)
]

defgen_constraints(sharding_type: ShardingType = ShardingType.TABLE_WISE) -> Dict[str, ParameterConstraints]:
  large_table_constraints = {
    "large_table_" + str(i): ParameterConstraints(
      sharding_types=[sharding_type.value],
    ) for i in range(large_table_cnt)
  }
  small_table_constraints = {
    "small_table_" + str(i): ParameterConstraints(
      sharding_types=[sharding_type.value],
    ) for i in range(small_table_cnt)
  }
  constraints = {**large_table_constraints, **small_table_constraints}
  return constraints
ebc = torchrec.EmbeddingBagCollection(
    device="cuda",
    tables=large_tables + small_tables
)

多进程中的 DistributedModelParallel

现在,我们有一个单一的执行函数来模拟 SPMD 执行期间一个 rank 的工作。

这段代码将与其他进程共同对模型进行分片,并相应地分配内存。它首先会设置进程组,并使用 planner 进行嵌入表的位置分配,然后使用 DistributedModelParallel 生成分片模型。

defsingle_rank_execution(
    rank: int,
    world_size: int,
    constraints: Dict[str, ParameterConstraints],
    module: torch.nn.Module,
    backend: str,
) -> None:
    importos
    importtorch
    importtorch.distributedasdist
    fromtorchrec.distributed.embeddingbagimport EmbeddingBagCollectionSharder
    fromtorchrec.distributed.model_parallelimport DistributedModelParallel
    fromtorchrec.distributed.plannerimport EmbeddingShardingPlanner, Topology
    fromtorchrec.distributed.typesimport ModuleSharder, ShardingEnv
    fromtypingimport cast

    definit_distributed_single_host(
        rank: int,
        world_size: int,
        backend: str,
        # pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type.
    ) -> dist.ProcessGroup:
        os.environ["RANK"] = f"{rank}"
        os.environ["WORLD_SIZE"] = f"{world_size}"
        dist.init_process_group(rank=rank, world_size=world_size, backend=backend)
        return dist.group.WORLD

    if backend == "nccl":
        device = torch.device(f"cuda:{rank}")
        torch.cuda.set_device(device)
    else:
        device = torch.device("cpu")
    topology = Topology(world_size=world_size, compute_device="cuda")
    pg = init_distributed_single_host(rank, world_size, backend)
    planner = EmbeddingShardingPlanner(
        topology=topology,
        constraints=constraints,
    )
    sharders = [cast(ModuleSharder[torch.nn.Module], EmbeddingBagCollectionSharder())]
    plan: ShardingPlan = planner.collective_plan(module, sharders, pg)

    sharded_model = DistributedModelParallel(
        module,
        env=ShardingEnv.from_process_group(pg),
        plan=plan,
        sharders=sharders,
        device=device,
    )
    print(f"rank:{rank},sharding plan: {plan}")
    return sharded_model

多进程执行

现在让我们在代表多个 GPU 进程的多进程中执行代码。

importmultiprocess

defspmd_sharing_simulation(
    sharding_type: ShardingType = ShardingType.TABLE_WISE,
    world_size = 2,
):
  ctx = multiprocess.get_context("spawn")
  processes = []
  for rank in range(world_size):
      p = ctx.Process(
          target=single_rank_execution,
          args=(
              rank,
              world_size,
              gen_constraints(sharding_type),
              ebc,
              "nccl"
          ),
      )
      p.start()
      processes.append(p)

  for p in processes:
      p.join()
      assert 0 == p.exitcode

表级别分片

现在让我们在两个进程中执行代码,使用 2 个 GPU。我们可以在计划打印中看到我们的表是如何在 GPU 之间分片的。每个节点将有一个大表和一个较小的表,这表明我们的规划器尝试为嵌入表进行负载均衡。表级分片是许多中小型表在设备之间进行负载均衡的实际默认分片方案。

spmd_sharing_simulation(ShardingType.TABLE_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}

探索其他分片模式

我们最初探讨了表级分片的概念及其如何平衡表的分布。现在,我们将更深入地探讨负载均衡的分片模式:行级分片。行级分片专门针对那些由于嵌入行数增加而导致内存需求过大,单个设备无法容纳的大表。它可以解决模型中超大表的分布问题。用户可以在打印的计划日志的 shard_sizes 部分看到,这些表在行维度上被一分为二,分布到两个 GPU 上。

spmd_sharing_simulation(ShardingType.ROW_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}

另一方面,按列进行处理可以解决具有大嵌入维度表的负载不均衡问题。我们将表格垂直分割。用户可以在打印的计划日志的 shard_sizes 部分看到,表格按嵌入维度一分为二,分配到两个 GPU 上。

spmd_sharing_simulation(ShardingType.COLUMN_WISE)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}

对于 table-row-wise,遗憾的是,由于其本质是在多主机设置下运行,我们无法模拟它。我们将在未来提供一个使用 SPMD 的 Python 示例,以使用 table-row-wise 训练模型。

在数据并行的情况下,我们将在所有设备上重复表格。

spmd_sharing_simulation(ShardingType.DATA_PARALLEL)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
本页目录