PyTorch 入门指南
学习 PyTorch
图像和视频
音频
后端
强化学习
在生产环境中部署 PyTorch 模型
Profiling PyTorch
代码变换与FX
前端API
扩展 PyTorch
模型优化
并行和分布式训练
边缘端的 ExecuTorch
推荐系统
多模态

基础知识 || 快速入门 || 张量 || 数据集与数据加载器 || 转换 || 构建模型 || 自动求导 || 优化 || 保存与加载模型

快速入门

本节将介绍机器学习中常见任务的 API。请参阅每个部分中的链接以深入了解。

数据处理

PyTorch 提供了两个用于处理数据的基本工具torch.utils.data.DataLoadertorch.utils.data.DatasetDataset 用于存储样本及其对应的标签,而 DataLoader 则在 Dataset 外部包装了一个可迭代对象。

importtorch
fromtorchimport nn
fromtorch.utils.dataimport DataLoader
fromtorchvisionimport datasets
fromtorchvision.transformsimport ToTensor

PyTorch 提供了特定领域的库,如 TorchTextTorchVisionTorchAudio,这些库都包含数据集。在本教程中,我们将使用 TorchVision 数据集。

torchvision.datasets 模块包含了许多现实世界视觉数据的 Dataset 对象,如 CIFAR、COCO(完整列表在此)。在本教程中,我们使用 FashionMNIST 数据集。每个 TorchVision Dataset 都包含两个参数:transformtarget_transform,分别用于修改样本和标签。

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 362kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 680kB/s]
  3%|3         | 885k/26.4M [00:00<00:10, 2.48MB/s]
  7%|7         | 1.93M/26.4M [00:00<00:05, 4.12MB/s]
 25%|##4       | 6.55M/26.4M [00:00<00:01, 15.1MB/s]
 38%|###8      | 10.1M/26.4M [00:00<00:00, 17.4MB/s]
 58%|#####8    | 15.4M/26.4M [00:01<00:00, 25.8MB/s]
 73%|#######2  | 19.2M/26.4M [00:01<00:00, 24.9MB/s]
 93%|#########2| 24.5M/26.4M [00:01<00:00, 31.2MB/s]
100%|##########| 26.4M/26.4M [00:01<00:00, 19.3MB/s]

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|##########| 29.5k/29.5k [00:00<00:00, 329kB/s]

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|1         | 65.5k/4.42M [00:00<00:12, 362kB/s]
  5%|5         | 229k/4.42M [00:00<00:06, 680kB/s]
 21%|##        | 918k/4.42M [00:00<00:01, 2.11MB/s]
 73%|#######3  | 3.24M/4.42M [00:00<00:00, 7.72MB/s]
100%|##########| 4.42M/4.42M [00:00<00:00, 6.08MB/s]

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|##########| 5.15k/5.15k [00:00<00:00, 40.6MB/s]

我们将 Dataset 作为参数传递给 DataLoader。这将数据集封装为一个可迭代对象,并支持自动批处理、采样、打乱顺序以及多进程数据加载。在这里,我们定义了批处理大小为 64,也就是说,dataloader 可迭代对象中的每个元素将返回包含 64 个特征和标签的批次。

batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape}{y.dtype}")
    break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64

阅读更多关于 在 PyTorch 中加载数据 的内容。

创建模型

要在 PyTorch 中定义一个神经网络,我们创建一个继承自 nn.Module 的类。我们在 __init__ 函数中定义网络的各层,并在 forward 函数中指定数据如何通过网络传递。为了加速神经网络中的操作,我们将其移动到 accelerator,例如 CUDA、MPS、MTIA 或 XPU。如果当前的加速器可用,我们将使用它;否则,我们使用 CPU。

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")

# Define model
classNeuralNetwork(nn.Module):
    def__init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )

    defforward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork().to(device)
print(model)
Using cuda device
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

了解更多关于在 PyTorch 中构建神经网络的内容。

优化模型参数

要训练模型,我们需要一个损失函数和一个优化器

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

在单个训练循环中,模型会对训练数据集(以批次形式输入)进行预测,并通过反向传播预测误差来调整模型的参数。

deftrain(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

我们还会根据测试数据集检查模型的性能,以确保它在进行学习。

deftest(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f}\n")

训练过程通过多次迭代(epochs)进行。在每个epoch中,模型学习参数以做出更好的预测。我们会在每个epoch打印模型的准确率和损失;我们希望看到准确率随着每个epoch的增加而提高,损失则逐渐减少。

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
*------------------------------
loss: 2.303494  [   64/60000]
loss: 2.294637  [ 6464/60000]
loss: 2.277102  [12864/60000]
loss: 2.269977  [19264/60000]
loss: 2.254235  [25664/60000]
loss: 2.237146  [32064/60000]
loss: 2.231055  [38464/60000]
loss: 2.205037  [44864/60000]
loss: 2.203240  [51264/60000]
loss: 2.170889  [57664/60000]
Test Error:
 Accuracy: 53.9%, Avg loss: 2.168588

Epoch 2
*------------------------------
loss: 2.177787  [   64/60000]
loss: 2.168083  [ 6464/60000]
loss: 2.114910  [12864/60000]
loss: 2.130412  [19264/60000]
loss: 2.087473  [25664/60000]
loss: 2.039670  [32064/60000]
loss: 2.054274  [38464/60000]
loss: 1.985457  [44864/60000]
loss: 1.996023  [51264/60000]
loss: 1.917241  [57664/60000]
Test Error:
 Accuracy: 60.2%, Avg loss: 1.920374

Epoch 3
*------------------------------
loss: 1.951705  [   64/60000]
loss: 1.919516  [ 6464/60000]
loss: 1.808730  [12864/60000]
loss: 1.846550  [19264/60000]
loss: 1.740618  [25664/60000]
loss: 1.698733  [32064/60000]
loss: 1.708889  [38464/60000]
loss: 1.614436  [44864/60000]
loss: 1.646475  [51264/60000]
loss: 1.524308  [57664/60000]
Test Error:
 Accuracy: 61.4%, Avg loss: 1.547092

Epoch 4
*------------------------------
loss: 1.612695  [   64/60000]
loss: 1.570870  [ 6464/60000]
loss: 1.424730  [12864/60000]
loss: 1.489542  [19264/60000]
loss: 1.367256  [25664/60000]
loss: 1.373464  [32064/60000]
loss: 1.376744  [38464/60000]
loss: 1.304962  [44864/60000]
loss: 1.347154  [51264/60000]
loss: 1.230661  [57664/60000]
Test Error:
 Accuracy: 62.7%, Avg loss: 1.260891

Epoch 5
*------------------------------
loss: 1.337803  [   64/60000]
loss: 1.313278  [ 6464/60000]
loss: 1.151837  [12864/60000]
loss: 1.252142  [19264/60000]
loss: 1.123048  [25664/60000]
loss: 1.159531  [32064/60000]
loss: 1.175011  [38464/60000]
loss: 1.115554  [44864/60000]
loss: 1.160974  [51264/60000]
loss: 1.062730  [57664/60000]
Test Error:
 Accuracy: 64.6%, Avg loss: 1.087374

Done!

了解更多关于训练您的模型的信息。

保存模型

保存模型的一种常见方式是序列化内部状态字典(包含模型参数)。

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth

加载模型

加载模型的过程包括重新创建模型结构并将状态字典加载到其中。

model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth", weights_only=True))
<All keys matched successfully>

现在可以使用这个模型来进行预测。

classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    x = x.to(device)
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"

阅读更多关于 保存和加载模型 的信息。

本页目录