PyTorch 入门指南
学习 PyTorch
图像和视频
音频
后端
强化学习
在生产环境中部署 PyTorch 模型
Profiling PyTorch
代码变换与FX
前端API
扩展 PyTorch
模型优化
并行和分布式训练
边缘端的 ExecuTorch
推荐系统
多模态

通过示例学习 PyTorch

作者: Justin Johnson

这是我们较早的 PyTorch 教程之一。您可以在 Learn the Basics 中查看我们最新的入门内容。

本教程通过自包含的示例介绍了 PyTorch 的基本概念。

PyTorch 的核心提供了两个主要功能:

  • 一个 n 维张量,类似于 numpy,但可以在 GPU 上运行

  • 用于构建和训练神经网络的自动微分功能

我们将以拟合 \(y=\sin(x)\) 的三阶多项式问题作为示例。该网络将包含四个参数,并通过梯度下降法进行训练,以最小化网络输出与真实输出之间的欧几里得距离来拟合随机数据。

您可以在本页末尾浏览各个示例。

Tensors

热身:numpy

在介绍 PyTorch 之前,我们将首先使用 numpy 实现这个网络。

Numpy 提供了一个 n 维数组对象,以及许多用于操作这些数组的函数。Numpy 是一个通用的科学计算框架;它不了解计算图、深度学习或梯度。然而,我们可以通过使用 numpy 操作手动实现网络的前向和反向传播,轻松地使用 numpy 将三阶多项式拟合到正弦函数上:

# -*- coding: utf-8 -*-
importnumpyasnp
importmath

# Create random input and output data
x = np.linspace(-math.pi, math.pi, 2000)
y = np.sin(x)

# Randomly initialize weights
a = np.random.randn()
b = np.random.randn()
c = np.random.randn()
d = np.random.randn()

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    # y = a + b x + c x^2 + d x^3
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d

print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')

PyTorch: Tensors

Numpy 是一个优秀的框架,但它无法利用 GPU 来加速其数值计算。对于现代深度神经网络,GPU 通常能提供 50 倍或更高 的加速,因此不幸的是,numpy 无法满足现代深度学习的需求。

这里我们介绍 PyTorch 最基本的概念:Tensor。PyTorch Tensor 在概念上与 numpy 数组完全相同:Tensor 是一个 n 维数组,PyTorch 提供了许多操作这些 Tensor 的函数。在幕后,Tensor 可以跟踪计算图和梯度,但它们也是科学计算中的通用工具。

与 numpy 不同,PyTorch Tensor 可以利用 GPU 来加速其数值计算。要在 GPU 上运行 PyTorch Tensor,只需指定正确的设备即可。

这里我们使用 PyTorch Tensor 来拟合一个三次多项式到正弦函数。与上面的 numpy 示例类似,我们需要手动实现网络的前向和反向传播:

# -*- coding: utf-8 -*-

importtorch
importmath


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d


print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

自动求导

PyTorch: 张量与自动求导

在上述示例中,我们不得不手动实现神经网络的前向传播和反向传播。对于一个小型的双层网络来说,手动实现反向传播并不算太麻烦,但对于大型复杂网络来说,这会迅速变得非常棘手。

幸运的是,我们可以使用自动微分来自动化神经网络中反向传播的计算。PyTorch 中的 autograd 包正是提供了这一功能。在使用 autograd 时,网络的前向传播会定义一个计算图;图中的节点是张量(Tensors),而边则是从输入张量生成输出张量的函数。通过这个图进行反向传播,您可以轻松计算梯度。

这听起来很复杂,但在实际使用中却相当简单。每个 Tensor 都代表计算图中的一个节点。如果 x 是一个 Tensor,并且 x.requires_grad=True,那么 x.grad 就是另一个 Tensor,它保存了 x 相对于某个标量值的梯度。

在这里,我们使用 PyTorch 的 Tensors 和 autograd 来实现用三阶多项式拟合正弦波的示例;现在我们不再需要手动实现网络的反向传播过程:

# -*- coding: utf-8 -*-
importtorch
importmath

# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.

dtype = torch.float
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
torch.set_default_device(device)

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For a third order polynomial, we need
# 4 weights: y = a + b x + c x^2 + d x^3
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.randn((), dtype=dtype, requires_grad=True)
b = torch.randn((), dtype=dtype, requires_grad=True)
c = torch.randn((), dtype=dtype, requires_grad=True)
d = torch.randn((), dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y using operations on Tensors.
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call a.grad, b.grad. c.grad and d.grad will be Tensors holding
    # the gradient of the loss with respect to a, b, c, d respectively.
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

PyTorch: 定义新的自动求导函数

在底层,每个原始的自动求导操作实际上都是两个作用于张量的函数。forward 函数从输入张量计算输出张量。backward 函数接收输出张量相对于某个标量值的梯度,并计算输入张量相对于相同标量值的梯度。

在 PyTorch 中,我们可以通过定义一个 torch.autograd.Function 的子类并实现 forwardbackward 函数来轻松定义自己的自动求导操作。然后,我们可以通过构造一个实例并像函数一样调用它来使用新的自动求导操作,并传递包含输入数据的张量。

在这个例子中,我们将模型定义为 \(y=a+b P_3(c+dx)\),而不是 \(y=a+bx+cx^2+dx^3\),其中 \(P_3(x)=\frac{1}{2}\left(5x^3-3x\right)\) 是三次的勒让德多项式。我们编写了自己的自定义自动求导函数来计算 \(P_3\) 的前向和反向传播,并用它来实现我们的模型:

# -*- coding: utf-8 -*-
importtorch
importmath


classLegendrePolynomial3(torch.autograd.Function):
"""
    We can implement our own custom autograd Functions by subclassing
    torch.autograd.Function and implementing the forward and backward passes
    which operate on Tensors.
    """

    @staticmethod
    defforward(ctx, input):
"""
        In the forward pass we receive a Tensor containing the input and return
        a Tensor containing the output. ctx is a context object that can be used
        to stash information for backward computation. You can cache arbitrary
        objects for use in the backward pass using the ctx.save_for_backward method.
        """
        ctx.save_for_backward(input)
        return 0.5 * (5 * input ** 3 - 3 * input)

    @staticmethod
    defbackward(ctx, grad_output):
"""
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        input, = ctx.saved_tensors
        return grad_output * 1.5 * (5 * input ** 2 - 1)


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0")  # Uncomment this to run on GPU

# Create Tensors to hold input and outputs.
# By default, requires_grad=False, which indicates that we do not need to
# compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Create random Tensors for weights. For this example, we need
# 4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
# not too far from the correct result to ensure convergence.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)

learning_rate = 5e-6
for t in range(2000):
    # To apply our Function, we use Function.apply method. We alias this as 'P3'.
    P3 = LegendrePolynomial3.apply

    # Forward pass: compute predicted y using operations; we compute
    # P3 using our custom autograd operation.
    y_pred = a + b * P3(c + d * x)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass.
    loss.backward()

    # Update weights using gradient descent
    with torch.no_grad():
        a -= learning_rate * a.grad
        b -= learning_rate * b.grad
        c -= learning_rate * c.grad
        d -= learning_rate * d.grad

        # Manually zero the gradients after updating weights
        a.grad = None
        b.grad = None
        c.grad = None
        d.grad = None

print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')

nn 模块

PyTorch: nn

计算图和自动微分是定义复杂操作并自动求导的一个非常强大的范式;然而,对于大型神经网络来说,原始的自动微分可能有点过于底层。

在构建神经网络时,我们经常考虑将计算组织成,其中一些层具有可学习参数,这些参数将在学习过程中进行优化。

在 TensorFlow 中,像 KerasTensorFlow-SlimTFLearn 这样的包提供了比原始计算图更高层次的抽象,这些抽象对于构建神经网络非常有用。

在 PyTorch 中,nn 包也服务于同样的目的。nn 包定义了一组模块,这些模块大致相当于神经网络的层。一个模块接收输入张量并计算输出张量,但也可能持有内部状态,例如包含可学习参数的张量。nn 包还定义了一组常用的损失函数,这些函数在训练神经网络时非常有用。

在这个例子中,我们使用 nn 包来实现我们的多项式模型网络:

# -*- coding: utf-8 -*-
importtorch
importmath


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# For this example, the output y is a linear function of (x, x^2, x^3), so
# we can consider it as a linear layer neural network. Let's prepare the
# tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape
# (3,), for this case, broadcasting semantics will apply to obtain a tensor
# of shape (2000, 3) 

# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. The Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
# The Flatten layer flatens the output of the linear layer to a 1D tensor,
# to match the shape of `y`.
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
    torch.nn.Flatten(0, 1)
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-6
for t in range(2000):

    # Forward pass: compute predicted y by passing x to the model. Module objects
    # override the __call__ operator so you can call them like functions. When
    # doing so you pass a Tensor of input data to the Module and it produces
    # a Tensor of output data.
    y_pred = model(xx)

    # Compute and print loss. We pass Tensors containing the predicted and true
    # values of y, and the loss function returns a Tensor containing the
    # loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero the gradients before running the backward pass.
    model.zero_grad()

    # Backward pass: compute gradient of the loss with respect to all the learnable
    # parameters of the model. Internally, the parameters of each Module are stored
    # in Tensors with requires_grad=True, so this call will compute gradients for
    # all learnable parameters in the model.
    loss.backward()

    # Update the weights using gradient descent. Each parameter is a Tensor, so
    # we can access its gradients like we did before.
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

# You can access the first layer of `model` like accessing the first item of a list
linear_layer = model[0]

# For linear layer, its parameters are stored as `weight` and `bias`.
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:,0].item()} x + {linear_layer.weight[:,1].item()} x^2 + {linear_layer.weight[:,2].item()} x^3')

PyTorch: optim

到目前为止,我们通过手动修改包含可学习参数的 Tensor 来更新模型的权重,并使用 torch.no_grad() 进行控制。对于像随机梯度下降这样的简单优化算法来说,这并不是一个很大的负担。但在实际应用中,我们通常使用更复杂的优化器来训练神经网络,例如 AdaGradRMSPropAdam 等。

PyTorch 中的 optim 包抽象了优化算法的概念,并提供了常用优化算法的实现。

在本示例中,我们将像之前一样使用 nn 包来定义我们的模型,但我们将使用 optim 包提供的 RMSprop 算法来优化模型:

# -*- coding: utf-8 -*-
importtorch
importmath


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
    torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss(reduction='sum')

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use RMSprop; the optim package contains many other
# optimization algorithms. The first argument to the RMSprop constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-3
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate)
for t in range(2000):
    # Forward pass: compute predicted y by passing x to the model.
    y_pred = model(xx)

    # Compute and print loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the variables it will update (which are the learnable
    # weights of the model). This is because by default, gradients are
    # accumulated in buffers( i.e, not overwritten) whenever .backward()
    # is called. Checkout docs of torch.autograd.backward for more details.
    optimizer.zero_grad()

    # Backward pass: compute gradient of the loss with respect to model
    # parameters
    loss.backward()

    # Calling the step function on an Optimizer makes an update to its
    # parameters
    optimizer.step()


linear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:,0].item()} x + {linear_layer.weight[:,1].item()} x^2 + {linear_layer.weight[:,2].item()} x^3')

PyTorch: 自定义 nn 模块

有时您会希望定义比现有模块序列更复杂的模型;对于这些情况,您可以通过继承 nn.Module 并定义一个 forward 方法来自定义模块,该方法接收输入张量并使用其他模块或张量上的自动求导操作生成输出张量。

在本例中,我们将我们的三阶多项式实现为一个自定义的 Module 子类:

# -*- coding: utf-8 -*-
importtorch
importmath


classPolynomial3(torch.nn.Module):
    def__init__(self):
"""
        In the constructor we instantiate four parameters and assign them as
        member parameters.
        """
        super().__init__()
        self.a = torch.nn.Parameter(torch.randn(()))
        self.b = torch.nn.Parameter(torch.randn(()))
        self.c = torch.nn.Parameter(torch.randn(()))
        self.d = torch.nn.Parameter(torch.randn(()))

    defforward(self, x):
"""
        In the forward function we accept a Tensor of input data and we must return
        a Tensor of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Tensors.
        """
        return self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3

    defstring(self):
"""
        Just like any class in Python, you can also define custom method on PyTorch modules
        """
        return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = Polynomial3()

# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters (defined 
# with torch.nn.Parameter) which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
for t in range(2000):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print(f'Result: {model.string()}')

PyTorch: 控制流 + 权重共享

作为动态图和权重共享的示例,我们实现了一个非常奇特的模型:一个三到五阶的多项式,在每次前向传播时,随机选择一个3到5之间的数,并使用该阶数,多次重复使用相同的权重来计算四阶和五阶。

对于这个模型,我们可以使用普通的Python流程控制来实现循环,并且在定义前向传播时,通过多次重复使用相同的参数来实现权重共享。

我们可以轻松地将这个模型实现为一个Module子类:

# -*- coding: utf-8 -*-
importrandom
importtorch
importmath


classDynamicNet(torch.nn.Module):
    def__init__(self):
"""
        In the constructor we instantiate five parameters and assign them as members.
        """
        super().__init__()
        self.a = torch.nn.Parameter(torch.randn(()))
        self.b = torch.nn.Parameter(torch.randn(()))
        self.c = torch.nn.Parameter(torch.randn(()))
        self.d = torch.nn.Parameter(torch.randn(()))
        self.e = torch.nn.Parameter(torch.randn(()))

    defforward(self, x):
"""
        For the forward pass of the model, we randomly choose either 4, 5
        and reuse the e parameter to compute the contribution of these orders.

        Since each forward pass builds a dynamic computation graph, we can use normal
        Python control-flow operators like loops or conditional statements when
        defining the forward pass of the model.

        Here we also see that it is perfectly safe to reuse the same parameter many
        times when defining a computational graph.
        """
        y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
        for exp in range(4, random.randint(4, 6)):
            y = y + self.e * x ** exp
        return y

    defstring(self):
"""
        Just like any class in Python, you can also define custom method on PyTorch modules
        """
        return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3 + {self.e.item()} x^4 ? + {self.e.item()} x^5 ?'


# Create Tensors to hold input and outputs.
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)

# Construct our model by instantiating the class defined above
model = DynamicNet()

# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
for t in range(30000):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    if t % 2000 == 1999:
        print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print(f'Result: {model.string()}')

示例

您可以在此浏览上述示例。

本页目录