Python 内置函数
动态形状圆角
原版源代码:
# mypy: allow-untyped-defs import torch from torch._export.db.case import SupportLevel from torch.export import Dim class DynamicShapeRound(torch.nn.Module): """ Calling round on dynamic shapes is not supported. """ def forward(self, x): return x[: round(x.shape[0] / 2)] x = torch.randn(3, 2) dim0_x = Dim("dim0_x") example_args = (x,) tags = {"torch.dynamic-shape", "python.builtin"} support_level = SupportLevel.NOT_SUPPORTED_YET dynamic_shapes = {"x": {0: dim0_x}} model = DynamicShapeRound() torch.export.export(model, example_args, dynamic_shapes=dynamic_shapes)
结果:
Unsupported: Constraints violated (dim0_x)! For more information, run with TORCH_LOGS="+dynamic".
tensor_setattr
原版源代码:
# mypy: allow-untyped-defs import torch class TensorSetattr(torch.nn.Module): """ setattr() call onto tensors is not supported. """ def forward(self, x, attr): setattr(x, attr, torch.randn(3, 2)) return x + 4 example_args = (torch.randn(3, 2), "attr") tags = {"python.builtin"} model = TensorSetattr() torch.export.export(model, example_args)
结果:
ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, x: "f32[3, 2]", attr): add: "f32[3, 2]" = torch.ops.aten.add.Tensor(x, 4); x = None return (add,) Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=ConstantArgument(name='attr', value='attr'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)]) Range constraints: {}
类型反射方法
原版源代码:
# mypy: allow-untyped-defs import torch class A: @classmethod def func(cls, x): return 1 + x class TypeReflectionMethod(torch.nn.Module): """ type() calls on custom objects followed by attribute accesses are not allowed due to its overly dynamic nature. """ def forward(self, x): a = A() return type(a).func(x) example_args = (torch.randn(3, 4),) tags = {"python.builtin"} model = TypeReflectionMethod() torch.export.export(model, example_args)
结果:
ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, x: "f32[3, 4]"): add: "f32[3, 4]" = torch.ops.aten.add.Tensor(x, 1); x = None return (add,) Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)]) Range constraints: {}