torch.map
动态形状映射
原版源代码:
# mypy: allow-untyped-defs import torch from functorch.experimental.control_flow import map class DynamicShapeMap(torch.nn.Module): """ functorch map() maps a function over the first tensor dimension. """ def forward(self, xs, y): def body(x, y): return x + y return map(body, xs, y) example_args = (torch.randn(3, 2), torch.randn(2)) tags = {"torch.dynamic-shape", "torch.map"} model = DynamicShapeMap() torch.export.export(model, example_args)
结果:
ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, xs: "f32[3, 2]", y: "f32[2]"): body_graph_0 = self.body_graph_0 map_impl = torch.ops.higher_order.map_impl(body_graph_0, [xs], [y]); body_graph_0 = xs = y = None getitem: "f32[3, 2]" = map_impl[0]; map_impl = None return (getitem,) class body_graph_0(torch.nn.Module): def forward(self, xs: "f32[2]", y: "f32[2]"): add: "f32[2]" = torch.ops.aten.add.Tensor(xs, y); xs = y = None return (add,) Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='xs'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='y'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)]) Range constraints: {}