torch.cross
- torch.cross(input, other, dim=None, *, out=None) → Tensor
-
返回
input
和other
在维度dim
上的向量叉积。支持浮点型、双精度型、复数浮点型和复数双精度型数据类型的输入。也支持向量批次,并沿
dim
维度计算这些批次的乘积。在这种情况下,输出的批量维度与输入相同。参见
torch.linalg.cross()
,默认情况下 dim=-1。- 参数
- 关键字参数
-
out (Tensor, 可选) – 指定输出张量。
示例:
>>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.cross(a, b, dim=1) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> torch.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]])