torch.fake_quantize_per_channel_affine
- torch.fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) → Tensor
- 
    返回一个新的张量,该张量的数据使用 scale、zero_point、quant_min和quant_max参数,在由axis指定的通道上对input进行通道级别的假量化。$\text{output} = ( min( \text{quant\_max}, max( \text{quant\_min}, \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} ) ) - \text{zero\_point} ) \times \text{scale}$- 参数
- 返回值
- 
      一个新的通道级伪量化 torch.float32张量
- 返回类型
 示例: >>> x = torch.randn(2, 2, 2) >>> x tensor([[[-0.2525, -0.0466], [ 0.3491, -0.2168]], [[-0.5906, 1.6258], [ 0.6444, -0.0542]]]) >>> scales = (torch.randn(2) + 1) * 0.05 >>> scales tensor([0.0475, 0.0486]) >>> zero_points = torch.zeros(2).to(torch.int32) >>> zero_points tensor([0, 0]) >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) tensor([[[0.0000, 0.0000], [0.3405, 0.0000]], [[0.0000, 1.6134], [0.6323, 0.0000]]])