torch.Tensor.to_sparse_bsr

Tensor.to_sparse_bsr(blocksize, dense_dim) Tensor

将张量转换为指定块大小的块稀疏行(BSR)存储格式。如果self是分步的,则可以指定密集维度的数量,从而创建一个混合BSR张量,该张量包含dense_dim个密集维度和self.dim() - 2 - dense_dim个批次维度。

参数
  • blocksize (列表, 元组, torch.Size, 可选) – 结果 BSR 张量的块大小。该块大小必须是一个长度为二的元组,且其元素能够整除两个稀疏维度。

  • dense_dim (int, 可选) – 结果 BSR 张量的密集维度的数量。此参数仅在 self 是一个 stride 张量时使用,并且其值必须介于 0 和 self 张量维度减去二之间。

示例:

>>> dense = torch.randn(10, 10)
>>> sparse = dense.to_sparse_csr()
>>> sparse_bsr = sparse.to_sparse_bsr((5, 5))
>>> sparse_bsr.col_indices()
tensor([0, 1, 0, 1])

>>> dense = torch.zeros(4, 3, 1)
>>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1
>>> dense.to_sparse_bsr((2, 1), 1)
tensor(crow_indices=tensor([0, 2, 3]),
       col_indices=tensor([0, 2, 1]),
       values=tensor([[[[1.]],

                       [[1.]]],


                      [[[1.]],

                       [[1.]]],


                      [[[1.]],

                       [[1.]]]]), size=(4, 3, 1), nnz=3,
       layout=torch.sparse_bsr)
本页目录