torch.func.stack_module_state

torch.func.stack_module_state(models) params, buffers

使用vmap()为集成准备一个 torch.nn.Modules 列表。

给定一个包含 M 个相同类的 nn.Modules 列表,返回两个字典。这些字典将所有模块的参数和缓冲区按名称堆叠在一起。堆叠后的参数是可优化的(即,它们在autograd历史中成为新的叶子节点,并且与原始参数无关,可以直接传递给优化器)。

这里是一个简单的模型应用集成方法的例子:

num_models = 5
batch_size = 64
in_features, out_features = 3, 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
data = torch.randn(batch_size, 3)

def wrapper(params, buffers, data):
    return torch.func.functional_call(models[0], (params, buffers), data)

params, buffers = stack_module_state(models)
output = vmap(wrapper, (0, 0, None))(params, buffers, data)

assert output.shape == (num_models, batch_size, out_features)

当有子模块时,会遵循状态字典的命名惯例

import torch.nn as nn
class Foo(nn.Module):
    def __init__(self, in_features, out_features):
        super().__init__()
        hidden = 4
        self.l1 = nn.Linear(in_features, hidden)
        self.l2 = nn.Linear(hidden, out_features)

    def forward(self, x):
        return self.l2(self.l1(x))

num_models = 5
in_features, out_features = 3, 3
models = [Foo(in_features, out_features) for i in range(num_models)]
params, buffers = stack_module_state(models)
print(list(params.keys()))  # "l1.weight", "l1.bias", "l2.weight", "l2.bias"

警告

所有堆叠在一起的模块必须相同(除了参数和缓冲区的值不同外),并且应处于相同的模式(如训练或评估模式)。
返回类型

Tuple[Dict[str, Any], Dict[str, Any]]

本页目录