ConstantPad2d
- 类torch.nn.ConstantPad2d(padding, value)[源代码]
-
用常数值填充输入张量的边界。
对于 N 维填充,可以使用
torch.nn.functional.pad()
函数。- 参数
-
padding (int, tuple) – 填充大小。如果为 int,则在所有边界使用相同的填充值。如果是 4-元组,则分别使用 ($\text{padding\_left}$, $\text{padding\_right}$, $\text{padding\_top}$, $\text{padding\_bottom}$) 表示左、右、上、下填充值。
- 形状:
-
-
输入: $(N, C, H_{in}, W_{in})$ 或 $(C, H_{in}, W_{in})$。
-
输出为 $(N, C, H_{out}, W_{out})$ 或 $(C, H_{out}, W_{out})$
$H_{\text{out}} = H_{\text{in}} + \text{padding\_top} + \text{padding\_bottom}$
$W_{\text{out}} = W_{\text{in}} + \text{padding\_left} + \text{padding\_right}$
-
示例:
>>> m = nn.ConstantPad2d(2, 3.5) >>> input = torch.randn(1, 2, 2) >>> input tensor([[[ 1.6585, 0.4320], [-0.8701, -0.4649]]]) >>> m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000], [ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) >>> # using different paddings for different sides >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) >>> m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], [ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320], [ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649], [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])