ZeroPad2d

torch.nn.ZeroPad2d(padding)[源代码]

在输入张量的边界上用零进行 padding。

对于 N 维填充,可以使用 torch.nn.functional.pad() 函数。

参数

padding (int, tuple) – 填充大小。如果为 int,则在所有边界使用相同的填充值。如果是 4-元组,则分别使用 ($\text{padding\_left}$, $\text{padding\_right}$, $\text{padding\_top}$, $\text{padding\_bottom}$) 表示左、右、上、下填充值。

形状:
  • 输入: $(N, C, H_{in}, W_{in})$$(C, H_{in}, W_{in})$

  • 输出为 $(N, C, H_{out}, W_{out})$$(C, H_{out}, W_{out})$

    $H_{\text{out}} = H_{\text{in}} + \text{padding\_top} + \text{padding\_bottom}$

    $W_{\text{out}} = W_{\text{in}} + \text{padding\_left} + \text{padding\_right}$

示例:

>>> m = nn.ZeroPad2d(2)
>>> input = torch.randn(1, 1, 3, 3)
>>> input
tensor([[[[-0.1678, -0.4418,  1.9466],
          [ 0.9604, -0.4219, -0.5241],
          [-0.9162, -0.5436, -0.6446]]]])
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000, -0.1678, -0.4418,  1.9466,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.9604, -0.4219, -0.5241,  0.0000,  0.0000],
          [ 0.0000,  0.0000, -0.9162, -0.5436, -0.6446,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])
>>> # using different paddings for different sides
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
          [ 0.0000, -0.1678, -0.4418,  1.9466,  0.0000],
          [ 0.0000,  0.9604, -0.4219, -0.5241,  0.0000],
          [ 0.0000, -0.9162, -0.5436, -0.6446,  0.0000]]]])
本页目录