torch.autograd.function.FunctionCtx.mark_dirty
- FunctionCtx.mark_dirty(*args)[源代码]
-
将给定的张量标记为在原地操作中被修改。
这应当最多调用一次,要么在
setup_context()
方法中,要么在forward()
方法中,并且所有的参数都应该作为输入。在调用
forward()
时被就地修改的每个张量都应传递给此函数,以确保检查的准确性。函数的调用时间(是在修改前还是后)无关紧要。- 示例:
-
>>> class Inplace(Function): >>> @staticmethod >>> def forward(ctx, x): >>> x_npy = x.numpy() # x_npy shares storage with x >>> x_npy += 1 >>> ctx.mark_dirty(x) >>> return x >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, grad_output): >>> return grad_output >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double).clone() >>> b = a * a >>> Inplace.apply(a) # This would lead to wrong gradients! >>> # but the engine would not know unless we mark_dirty >>> b.backward() # RuntimeError: one of the variables needed for gradient >>> # computation has been modified by an inplace operation