软边际损失

torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean')[源代码]

创建一个准则,用于优化输入张量$x$和目标张量$y$(包含1或-1)之间的两分类逻辑回归损失。

$\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}$
参数
  • size_average (bool, optional) – 已弃用(请参见reduction)。默认情况下,损失值会在批次中的每个损失元素上进行平均计算。需要注意的是,对于某些损失函数,每个样本包含多个损失元素。如果将字段 size_average 设置为 False,则损失值会针对每个小批量求和。当reduceFalse时,此设置会被忽略。默认值: True

  • reduce (bool, optional) – 已弃用(请参见reduction)。默认情况下,损失值会根据size_average参数在每个小批量中进行平均或求和。当reduceFalse时,返回每批元素的单独损失值,并忽略size_average设置。默认值:True

  • reduction (str, 可选) – 指定要应用于输出的缩减方式:'none' | 'mean' | 'sum'
    'none': 不进行任何缩减,'mean': 输出总和除以元素数量,'sum': 对输出求和。注意:size_averagereduce 正在被弃用,在此期间,指定这两个参数中的任何一个将覆盖 reduction 参数。默认值: 'mean'

形状:
  • 输入: $(*)$,其中$*$表示任意维度的数量。

  • 目标: $(*)$,形状与输入相同。

  • 输出:标量。如果 reduction'none',那么结果为 $(*)$,其形状与输入相同。

本页目录